NORMAS PARA LOGRAR ÉXITO EN LA I. O.
1. El éxito del empleo de la Investigación de Operaciones es obtener un enfoque de solución de problemas, y no una colección asociada solo de métodos cuantitativos.
2. La I. O. es relativamente costosa, significa que no debe emplearse en todos los problemas, sino sólo en aquellos en que las ganancias sean mayores que los costos.
3. Para usar apropiadamente la I. O., es necesario primero comprender las metodologías y procedimientos para resolver los problemas, así como los fundamentos de las técnicas de solución, para saber cuándo utilizarlas en las diferentes circunstancias.
4. La aplicación de un grupo interdisiplinario a fin de lograr un consenso entre los distintos entornos del problema.
ÁREAS DE APLICACIÓN
Algunas personas se verían tentadas a aplicar métodos matemáticos a cuanto problema se presentase, pero es que ¿acaso siempre es necesario llegar al óptimo? Podría ser más caro el modelar y el llegar al óptimo que a la larga no nos dé un margen de ganancias muy superior al que ya tenemos. Tómese el siguiente ejemplo: La empresa EMX aplica I.O. y gasta por el estudio y el desarrollo de la aplicación $100 pero luego de aplicar el modelo observa que la mejora no es muy diferente a la que actualmente tenía. Podríamos pues indicar que la investigación de operaciones sólo se aplicará a los problemas para los cuales el buen sentido se revela impotente:
•En el dominio combinatorio, muchas veces la enumeración es imposible. Por ejemplo, si tenemos 200 trabajos por realizar, que toman tiempos distintos y solo cuatro personas que pueden hacerlos, enumerar cada una de las combinaciones podría ser ineficiente (aparte de desanimante). Luego los métodos de secuenciación serán los más apropiados para este tipo de problemas.
•De igual manera, la I.O. es útil cuando en los fenómenos estudiados interviene el azar. La noción de esperanza matemática y la teoría de procesos estocásticos suministran la herramienta necesaria para construir el cuadro en el cual se optimizará la función económica. Dentro de este tipo de fenómenos se encuentran las líneas de espera y los inventarios con demanda probabilística.
•Con mayor motivo, la investigación de operaciones se muestra como un conjunto de instrumentos precioso cuando se presentan situaciones de concurrencia. La teoría de juegos no permite siempre resolverlos formalmente, pero aporta un marco de reflexión que ayude a la toma de decisiones.
•Cuando observamos que los métodos científicos resultan engorrosos para nuestro conjunto de datos, tenemos otra opción, simular tanto el comportamiento actual así como las propuestas y ver si hay mejoras sustanciales. Las simulaciones son experiencias artificiales.
Finalmente debe ponerse la máxima atención en no considerar la investigación de operaciones como una colección de recetas heterogéneas y aplicables sistemáticamente en unas situaciones determinadas. Si se cae en este error, será muy difícil captar en condiciones reales los problemas que puedan deducirse de los múltiples aspectos de esta disciplina.
ENFOQUE DE LA INVESTIGACIÓN DE OPERACIONES
La parte innovadora de la IO es sin duda alguna su enfoque modelístico, producto de sus creadores aunado a la presión de supervivencia de la guerra o la sinergía generada al combinarse diferentes disciplinas, una descripción del enfoque es la siguiente.
1. Se define el sistema real en donde se presenta el problema. Dentro del sistema interactuan normalmente un gran numero de variables.
2. Se seleccionan las variables que norman la conducta o el estado actual del sistema, llamadas variables relevantes, con las cuales se define un sistema asumido del sistema real.
3. Se construye un modelo cuantitativo del sistema asumido, identificando y simplificando las relaciones entre las variables relevantes mediante las utilización de funciones matemáticas.
4. Se obtiene la solución al modelo cuantitativo mediante la aplicación de una o mas de las técnicas desarrolladas por la IO.
5. Se adapta e imprime la máxima realidad posible a la solución teórica del problema real obtenida en el punto 4, mediante la consideración de factores cualitativos o no cuantificables, los cuales no pudieron incluirse en el modelo. Además se ajusta los detalles finales vía el juicio y la experiencia del tomador de decisiones.
6. Se implanta la solución en el sistema real.
METODOLOGÍA DE LA INVESTIGACION DE OPERACIONES
DEFINICIÓN DEL PROBLEMA Y RECOLECCIÓN DE DATOS
La mayor parte de los problemas prácticos con los que se enfrenta el equipo IO están descritos inicialmente de una manera vaga. Por consiguiente, la primera actividad que se debe realizar es el estudio del sistema relevante y el desarrollo de un resumen bien definido del problema que se va a analizar. Esto incluye determinar los objetivos apropiados, las restricciones sobre lo que se puede hacer, las interrelaciones del área bajo estudio con otras áreas de la organización, los diferentes cursos de acción posibles, los límites de tiempo para tomar una decisión, etc. Este proceso de definir el problema es crucial ya que afectará en forma significativa la relevancia de las conclusiones del estudio. ¡Es difícil extraer una respuesta "correcta" a partir de un problema "equivocado"!
Por su naturaleza, la investigación de operaciones se encarga del bienestar de toda la organización, no sólo de algunos de sus componentes. Un estudio de IO busca soluciones óptimas globales y no soluciones subóptimas aunque sean lo mejor para uno de los componente. Entonces, idealmente, los objetivos que se formulan debe coincidir con los de toda la organización. Sin embargo, esto no siempre es conveniente. Muchos problemas interesan nada más a una parte de la organización, de manera que el análisis sería innecesariamente basado si los objetivos fueran muy generales y si se prestara atención especial a todos los efectos secundarios sobre el resto de la organización. En lugar de ello, los objetivos usados en un estudio deben ser tan específicos como sea posible, siempre y cuando contemplen las metas principales del tomador de decisiones y mantengan un nivel razonable de consistencia con los objetivos de los altos niveles.
Las condiciones fundamentales para que exista un problema es que se establezca una diferencia entre lo que es (situación actual) y lo que debe ser (situación deseada u objetivo) y además exista cuando menos una forma de eliminar o disminuir esa diferencia. Los componentes de un problema son: a) el tomador de decisiones o ejecutivo; b) los objetivos de la organización; c) el sistema o ambiente en el que se sitúa el problema; d) Los cursos de acción alternativos que se pueden tomar para resolverlo.
Para formular un problema se requiere; a) identificar las componentes y variables controlables y no controlables del sistema; b) identificar los posibles cursos de acción, determinados por las componentes controlables; c) definir el marco de referencia dado por las componentes no controlables; d) definir los objetivos que se busca alcanzar y clasificarlos por orden de importancia; e) identificar las interpelaciones importantes entre las diferentes partes del sistema y encontrar las restricciones que existen.
FORMULACIÓN DE UN MODELO MATEMÁTICO
Una vez definido el problema del tomador de decisiones, la siguiente etapa consiste en reformularlo de manera conveniente para su análisis. La forma convencional en que la investigación de operaciones realiza esto es construyendo un modelo matemático que represente la esencia del problema. Antes de analizar como formular los modelos de este tipo, se explorará la naturaleza general de los modelos y, en particular, la de los modelos matemáticos.
El modelo matemático está constituido por relaciones matemáticas (ecuaciones y desigualdades) establecidas en términos de variables, que representa la esencia el problema que se pretende solucionar.
Para construir un modelo es necesario primero definir las variables en función de las cuales será establecido. Luego, se procede a determinar matemáticamente cada una de las dos partes que constituyen un modelo: a) la medida de efectividad que permite conocer el nivel de logro de los objetivos y generalmente es una función (ecuación) llamada función objetivo; b) las limitantes del problema llamadas restricciones que son un conjunto de igualdades o desigualdades que constituyen las barreras y obstáculos para la consecución del objetivo.
Un modelo siempre debe ser menos complejo que el problema real, es una aproximación abstracta de la realidad con consideraciones y simplificaciones que hacen más manejable el problema y permiten evaluar eficientemente las alternativas de solución.
Los modelos matemáticos tienen muchas ventajas sobre una descripción verbal del problema. Una ventaja obvia es que el modelo matemático describe un problema en forma mucho más concisa. Esto tiende a hacer que toda la estructura del problema sea más comprensible y ayude a revelar las relaciones importantes entre causa y efecto. De esta manera, indica con más claridad que datos adicionales son importantes para el análisis. También facilita simultáneamente el manejo del problema en su totalidad y el estudio de todas sus interpelaciones. Por último, un modelo matemático forma un puente para poder emplear técnicas matemáticas y computadoras de alto poder, para analizar el problema.
Por otro lado, existen obstáculos que deben evitarse al usar modelos matemáticos. Un modelo es, necesariamente, una idealización abstracta del problema, por lo que casi siempre se requieren aproximaciones y suposiciones de simplificación si se quiere que el modelo sea manejable (susceptible de ser resuelto). Por lo tanto, debe tenerse cuidado de que el modelo sea siempre una representación válida del problema. El criterio apropiado para juzgar la validez de un modelo es el hecho de si predice o no con suficiente exactitud los efectos relativos de los diferentes cursos de acción, para poder tomar una decisión que tenga sentido. En consecuencia, no es necesario incluir detalles sin importancia o factores que tienen aproximadamente el mismo efecto sobre todas las opciones. Ni siquiera es necesario que la magnitud absoluta de la medida de efectividad sea aproximadamente correcta para las diferentes alternativas, siempre que sus valores relativos (es decir, las diferencias entre sus valores) sean bastante preciso. Entonces, todo lo que se requiere es que exista una alta correlación entre la predicción del modelo y lo que ocurre en la vida real. Para asegurar que este requisito se cumpla, es importante hacer un número considerable de pruebas del modelo y las modificaciones consecuentes. Aunque esta fase de pruebas se haya colocado después en el orden del libro, gran parte del trabajo de validación del modelo se lleva a cabo durante la etapa de construcción para que sirva de guía en la obtención del modelo matemático.
OBTENCIÓN DE UNA SOLUCIÓN A PARTIR DEL MODELO
Resolver un modelo consiste en encontrar los valores de las variables dependientes, asociadas a las componentes controlables del sistema con el propósito de optimizar, si es posible, o cuando menos mejorar la eficiencia o la efectividad del sistema dentro del marco de referencia que fijan los objetivos y las restricciones del problema.
La selección del método de solución depende de las características del modelo. Los procedimientos de solución pueden ser clasificados en tres tipos: a) analíticos, que utilizan procesos de deducción matemática; b) numéricos, que son de carácter inductivo y funcionan en base a operaciones de prueba y error; c) simulación, que utiliza métodos que imitan o, emulan al sistema real, en base a un modelo.
Muchos de los procedimientos de solución tienen la característica de ser iterativos, es decir buscan la solución en base a la repetición de la misma regla analítica hasta llegar a ella, si la hay, o cuando menos a una aproximación.
PRUEBA DEL MODELO
El desarrollo de un modelo matemático grande es análogo en algunos aspectos al desarrollo de un programa de computadora grande. Cuando se completa la primera versión, es inevitable que contenga muchas fallas. El programa debe probarse de manera exhaustiva para tratar de encontrar y corregir tantos problemas como sea posible. Eventualmente, después de una larga serie de programas mejorados, el programador (o equipo de programación) concluye que el actual da, en general, resultados razonablemente válidos. Aunque sin duda quedarán algunas fallas ocultas en el programa (y quizá nunca se detecten, se habrán eliminado suficientes problemas importantes como para que sea confiable utilizarlo.
De manera similar, es inevitable que la primera versión de un modelo matemático grande tenga muchas fallas. Sin duda, algunos factores o interpelaciones relevantes no se incorporaron al modelo y algunos parámetros no se estimaron correctamente. Esto no se puede eludir dada la dificultad de la comunicación y la compresión de todos los aspectos y sutilezas de un problema operacional complejo, así como la dificultad de recolectar datos confiables. Por lo tanto, antes de usar el modelo debe probarse exhaustivamente para intentar identificar y corregir todas las fallas que se pueda. Con el tiempo, después de una larga serie de modelos mejorados, el equipo de IO concluye que el modelo actual produce resultados
razonablemente válidos. Aunque sin duda quedarán algunos problemas menores ocultos en el modelo (y quizá nunca se detecten), las fallas importantes se habrán eliminado de manera que ahora es confiable usar el modelo. Este proceso de prueba y mejoramiento de un modelo para incrementar su validez se conoce como validación del modelo.
Debido a que el equipo de IO puede pasar meses desarrollando todas las piezas detalladas del modelo, es sencillo "no ver el bosque por buscar los árboles". Entonces, después de completar los detalles ("los árboles") de la versión inicial del modelo, una buena manera de comenzar las pruebas es observarlo en forma global ("el bosque") para verificar los errores u omisiones obvias. El grupo que hace esta revisión debe, de preferencia, incluir por lo menos a una persona que no haya participado en la formulación. Al examinar de nuevo la formulación del problema y comprarla con el modelo pueden descubrirse este tipo de errores. También es útil asegurarse de que todas las expresiones matemáticas sean consistentes en las dimensiones de las unidades que emplean. Además, puede obtenerse un mejor conocimiento de la validez del modelo variando los valores de los parámetros de entrada y/o de las variables de decisión, y comprobando que los resultados del modelo se comporten de una manera factible. Con frecuencia, esto es especialmente revelador cuando se asignan a los parámetros o a las variables valores extremos cercanos a su máximo o a su mínimo.
Un enfoque más sistemático para la prueba del modelo es emplear una prueba retrospectiva. Cuando es aplicable, esta prueba utiliza datos históricos y reconstruye el pasado para determinar si el modelo y la solución resultante hubieran tenido un buen desempeño, de haberse usado. La comparación de la efectividad de este desempeño hipotético con lo que en realidad ocurrió, indica si el uso del modelo tiende a dar mejoras significativas sobre la práctica actual. Puede también indicar áreas en las que el modelo tiene fallas y requiere modificaciones. Lo que es más, el emplear las alternativas de solución y estimar sus desempeños históricos hipotéticos, se pueden reunir evidencias en cuanto a lo bien que el modelo predice los efectos relativos de los diferentes cursos de acción.
Cuando se determina que el modelo y la solución no son válidos, es necesario iniciar nuevamente el proceso revisando cada una de las fases de la metodología de la investigación de operaciones.
ESTABLECIMIENTO DE CONTROLES SOBRE LA SOLUCION
Una solución establecida como válida para un problema, permanece como tal siempre y cuando las condiciones del problema tales como: las variables no controlables, los parámetros, las relaciones, etc., no cambien significativamente. Esta situación se vuelve más factible cuando algunos de los parámetros fueron estimados aproximadamente. Por lo anterior, es necesario generar información adicional sobre el comportamiento de la solución debido a cambios en los parámetros del modelo. usualmente esto se conoce como análisis de sensibilidad. En pocas palabras, esta fase consiste en determinar los rangos de variación de los parámetros dentro de los cuales no cambia la solución del problema.
IMPLANTACION DE LA SOLUCION
El paso final se inicia con el proceso de "vender" los hallazgos que se hicieron a lo largo del proceso a los ejecutivos o tomadores de decisiones. Una vez superado éste obstáculo, se debe traducir la solución encontrada a instrucciones y operaciones comprensibles para los individuos que intervienen en la operación y administración del sistema. La etapa de implantación de una solución se simplifica en gran medida cuando se ha propiciado la participación de todos los involucrados en el problema en cada fase de la metodología. Preparación para la aplicación del modelo.
Esta etapa es crítica, ya que es aquí, y sólo aquí, donde se cosecharán los beneficios del estudio. Por lo tanto, es importante que el equipo de IO participe, tanto para asegurar que las soluciones del modelo se traduzcan con exactitud a un procedimiento operativo, como para corregir cualquier defecto en la solución que salga a la luz en este momento.
El éxito de la puesta en práctica depende en gran parte del apoyo que proporcionen tanto la alta administración como la gerencia operativa. Es más probable que el equipo de IO obtenga este apoyo si ha mantenido a la administración bien informada y ha fomentado la guía de la gerencia durante el estudio. La buena comunicación ayuda a asegurar que el estudio logre lo que la administración quiere y por lo tanto merezca llevarse a la práctica. También proporciona a la administración el sentimiento de que el estudio es suyo y esto facilita el apoyo para la implantación.
La etapa de implantación incluye varios pasos. Primero, el equipo de investigación de operaciones de una cuidadosa explicación a la gerencia operativa sobre el nuevo sistema que se va a adoptar y su relación con la realidad operativa. En seguida, estos dos grupos comparten la responsabilidad de desarrollar los procedimientos requeridos para poner este sistema en operación. La gerencia operativa se encarga después de dar una capacitación detallada al personal que participa, y se inicia entonces el nuevo curso de acción. Si tiene éxito, el nuevo sistema se podrá emplear durante algunos años. Con esto en mente, el equipo de IO supervisa la experiencia inicial con la acción tomada para identificar cualquier modificación que tenga que hacerse en el futuro.
A la culminación del estudio, es apropiado que el equipo de investigación de operaciones documento su metodología con suficiente claridad y detalle para que el trabajo sea reproducible. Poder obtener una réplica debe ser parte del código de ética profesional del investigador de operaciones. Esta condición es crucial especialmente cuando se estudian políticas gubernamentales en controversia.
LIMITACIONES DE LA INVESTIGACIÓN DE OPERACIONES
1. Frecuentemente es necesario hacer simplificaciones del problema original para poder manipularlo y detener una solución.
2. La mayoría de los modelos sólo considera un solo objetivo y frecuentemente en las organizaciones se tienen objetivos múltiples.
3. Existe la tendencia a no considerar la totalidad de las restricciones en un problema práctico, debido a que los métodos de enseñanza y entrenamiento dan la aplicación de esta ciencia centralmente se basan en problemas pequeños para razones de índole práctico.
4. Casi nunca se realizan análisis costo-beneficio de la implantación de soluciones definidas por medio de la I de O, en ocasiones los beneficios potenciales se van superados por los costos ocasionados por el desarrollo e implantación de un modelo.